:
)

No Work \Leftrightarrow No Points

Use Pencil Only \Leftrightarrow Be Neat & Organized

1. (4 points) Find a value for the constant k that will make the following function continuous.

$$f(x) = \begin{cases} kx^2, & x \le 2\\ 2x+k, & x > 2 \end{cases}$$

2. (4 points) Evaluate:
$$\lim_{x \to a} \frac{x^3 - a^3}{x^2 - a^2}$$

2. ____

1. _

3. (4 points) Evaluate: $\lim_{x \to 0} \frac{\sin 7x}{\sin 3x}$

3. _____

4. (5 points) Evaluate $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ for any quadratic function.

4. _____

5. (4 points) Find a value for the constant k that will make the following function continuous.

$$f(x) = \begin{cases} \frac{x^2 - 4}{x^3 - 8}, & x \neq 2\\ k, & x = 2 \end{cases}$$

.

5. _____

6. (4 points) Evaluate:
$$\lim_{x \to 3} \frac{\sin(x-3)}{x^2 + 2x - 15}$$

6. _____

7. (4 points) Evaluate
$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ for } f(x) = \frac{1}{x-1}.$$

8. (4 points) Find the equation of the tangent line to the graph of $f(x) = x^3$ at the point (1,1) .

9. (4 points) Evaluate:
$$\lim_{x \to \pi/2} \frac{1 - \cos(x - \pi/2)}{x - \pi/2}$$

9.____

8. _____

10. (4 points) Find the equation of the tangent line to the graph of $f(x) = \sqrt{x}$ at the point (4,2).

10. _____

11. (4 points) Evaluate $\lim_{x \to 0} f(x)$ if $1 - x^4 \le f(x) \le \cos x$ for all x in $[-\pi/2, \pi/2]$.

11._____

12. (5 points) For $\epsilon = 0.1$, find $0 < \delta \le 1$ such that $\lim_{x \to 3} x^2 = 9$.

12.